Wireless HDL Toolbox™
Reference

7

MATLAB&SIMULINK

R2022b ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Wireless HDL Toolbox™ Reference
© COPYRIGHT 2017 - 2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

September 2017 Online only New for Version 1.0 (Release 2017b)

March 2018 Online only Revised for Version 1.1 (Release 2018a)
September 2018 Online only Revised for Version 1.2 (Release 2018b)
March 2019 Online only Revised for Version 1.3 (Release 2019a)
September 2019 Online only Revised for Version 1.4 (Release 2019b)
March 2020 Online only Revised for Version 2.0 (Release 2020a)
September 2020 Online only Revised for Version 2.1 (Release 2020b)
March 2021 Online only Revised for Version 2.2 (Release 2021a)
September 2021 Online only Revised for Version 2.3 (Release 2021b)
March 2022 Online only Revised for Version 2.4 (Release 2022a)

September 2022 Online only Revised for Version 2.5 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Blocks

1]

Functions

2|

iii

Blocks

1 Blocks

1-2

Frame To Samples

Convert frame-based data to sample stream
Library: Wireless HDL Toolbox / I/O Interfaces

sample
frame Frame To Samples

ctrl

Frame To Samples

Description

The Frame To Samples block flattens frame-based input into a stream of samples. The block also

returns a stream of corresponding control signals that indicate sample validity and the boundaries of
the frame. You can configure idle cycles inserted between samples or between frames, and how many
values represent each sample. See “Streaming Sample Interface” for details of the streaming format.

Use this block to generate input for a subsystem targeted for HDL code generation. This block does
not support HDL code generation.

Ports
Input

frame — Frame of input samples
column vector

Frame of input samples, specified as a column vector. All samples in the vector are considered valid.
Each frame must be the same size.

Data Types: single | double | int8 | int16 | int32 | uint8 | uintl1l6 | uint32 | Boolean | fixed
point

Output

sample — Output sample stream
scalar | vector

Output sample stream, returned Qutput size values at a time. The output stream includes idle
samples as specified by Idle cycles between samples and Idle cycles between frames. Each
output sample has a corresponding set of control signals on the ctrl port.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

Frame To Samples

* start — Indicates the start of the output frame
* end — Indicates the end of the output frame
* valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.

Data Types: bus

Parameters
Idle cycles between samples — Number of idle cycles to insert after each sample

0 (default) | integer

Number of idle cycles to insert after each sample, specified as a scalar integer. The block returns a
vector of Output size zeros for each idle cycle and sets all control signals to 0 (false).

Idle cycles between frames — Number of idle cycles to insert at the end of each frame

0 (default) | integer

Number of idle cycles to insert at the end of each frame, specified as a scalar integer. The block
returns a vector of Qutput size zeros for each idle cycle and sets all control signals to 0 (false).

Output size — Number of values representing each sample
1 (default) | positive integer

Number of values representing each sample, specified as a positive integer scalar. The block outputs
a vector of QOutput size values. Each vector has one corresponding set of control signals. For
example, you can use this parameter to serialize turbo-encoded samples. In the LTE standard, the
turbo code rate is 1/3, so each sample is represented by one systematic value and two parity values:
S n, P1 n, and P2 n. In this case, set Qutput size to 3.

Compose output from interleaved input samples — Order of output samples relative to
input order

off (default) | on

Order of output samples relative to input order, when more than one value represents each sample.
For example, for 1/3 turbo-encoded samples, the input frame can be ordered [S 1 P1 1 P2 1 S 2
P12 P2 2]or[S 1S 2P11P12 P21 P2 2].Inthefirstcase, the output is two vectors,
[S1P11P21]and[S 2 P1 2 P2 2].To achieve the same output in the second case, select
Compose output from interleaved input samples.

Dependencies

This parameter applies when Qutput size is greater than one.

Version History
Introduced in R2017b

1-3

1 Blocks

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink® accelerator and rapid accelerator modes
and for DPI component generation.

See Also

Blocks
Samples To Frame

Functions
whdlFramesToSamples

1-4

Samples To Frame

Samples To Frame

Convert sample stream to frame-based data
Library: Wireless HDL Toolbox / I/O Interfaces

sample frame

Samples To Frama

Samples To Frame

Description

The Samples To Frame block reconstructs frame-based data from a stream of samples and its
corresponding control signals. It removes any idle or nonvalid samples from the data. See “Streaming
Sample Interface” for details of the streaming format.

Use this block to process output from a subsystem targeted for HDL code generation. This block does
not support HDL code generation.

Ports
Input

sample — Stream of samples
scalar | vector

Stream of samples, specified as a scalar or vector. Vector input values represent a single sample, such
as turbo-encoded samples represented by one systematic value and two parity values. The stream can
include idle cycles between samples and between frames. Idle samples are discarded. double and
single are supported for simulation but not for HDL code generation.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint1l6 | uint32 | Boolean | fixed
point

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

* start — Indicates the start of the input frame
* end — Indicates the end of the input frame
* valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.

Data Types: bus

1-5

1 Blocks

1-6

Output

frame — Frame of output samples
column vector

Frame of output samples, returned as a column vector. Each frame is the same size. If the input frame
is smaller than Output size, the block pads the frame with zeroes. If the output frame is larger than
the Output size, the block forms the frame by using the first Qutput size samples. You can
optionally output the number of valid samples in each frame on the len port.

valid — Validity of output frame
scalar

Validity of output frame, returned as a Boolean scalar. This port returns 1 (true) when the values on
the frame and len (optional) ports, are valid.

Data Types: Boolean

len — Number of valid samples in output frame
integer

Number of valid samples in output frame, returned as an integer. The input sample stream can have
frames of different sizes. The block returns a constant size vector on the frame port, padded with
zeroes when the input frame is smaller than Output size. The len port indicates how many valid
samples are in the output frame. If the output frame is larger than the Output size, the block forms
the frame by using the first Qutput size samples.

Data Types: double

Parameters
Input size — Number of values representing each sample
1 (default) | positive integer

Number of values representing each sample, specified as a positive integer scalar. The block accepts
a vector of Input size values. Each vector has one corresponding set of control signals. For example,
you can use this parameter for turbo-encoded samples. In the LTE standard, the turbo code rate is
1/3, so each sample is represented by one systematic value and two parity values: S n, P1 n, and
P2 n. In this case, set Input size to 3.

Frame search window — Number of input cycles to buffer

1 (default) | positive integer

Number of input cycles to buffer before attempting to form an output frame, specified as an integer.
The block simulates faster when this parameter is larger. However, the block returns at most one
frame from each search window. If more than one frame fits in this window, the block returns the first
one it finds and drops the later frames. The default setting, 1 cycle, never drops frames, but results in
slower simulation. Therefore, it is a best practice to set this parameter to the minimum number of
cycles per frame, including idle cycles.

For example, calculate the valid cycles and idle cycles representing each frame. Each cycle may
include more than one sample, depending on your Input size (samplesize) setting.

Samples To Frame

% Exact setting: includes idle cycles
totalframesize = ((framesamples/samplesize)*...
(idlecyclesbetweensamples+1))+idlecyclesbetweenframes;

If the frame and sample spacing is variable or unknown, then a conservative compromise is to set the
Frame search window to the minimum number of valid cycles per frame. For instance, for a turbo
encoder block, the output frame size depends on the coding rate, 1/R, and tail bits specified by the
LTE standard. The output data has R samples per cycle. This calculation does not include any idle
cycles between samples or between frames.

% Conservative setting: number of valid output cycles, without idles
encoderrate
numtailbits

= 3;
= 12;
framesize = (fra

mesamples+numtailbits)/encoderrate;
Output size — Maximum samples per frame
1024 (default) | positive integer

Maximum number of samples per frame, specified as an integer. The input sample stream can have
frames of different sizes. The block returns a constant size vector, padded with zeroes if the frame is
smaller than Output size. If the block receives a frame larger than Output size, it truncates the
frame.

Compose output from interleaved input samples — Order of output samples relative to
input order

off (default) | on

Order of output samples relative to input order, when more than one value represents each sample.
For example, 1/3 turbo-encoded samples are represented by [S 1 P1 1 P2 1] and [S 2 P1 2

P2 2]. The default output orderis [S 1 P1 1 P2 1 S 2 P1 2 P2 2]. To reorder the samples so
that systematic and parity values are grouped together, select Compose output from interleaved
input samples. The output orderisthen [S 1 S 2 P1 1 P1 2 P2 1 P2 2].

Enable frame length output port — Output number of valid samples

off (default) | on

Enable frame length output port. Select this option to return the number of valid samples in each
output frame. The length is returned on the len port and is qualified by the valid signal. Use this

option when the sample stream has variable size frames or when a downstream block requires the
frame size as input, such as LTE Turbo Decoder.

Version History
Introduced in R2017b

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1-7

1 Blocks

1-8

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

See Also

Blocks
Frame To Samples

Functions
whd1SamplesToFrames

FIL Frame To Samples

FIL Frame To Samples

Convert frame-based data to sample stream for FPGA-in-the-loop
Library: Wireless HDL Toolbox / I/O Interfaces

samglet

FIL
TS Frame To Samples

FIL Frame To Samples

Description

The FIL Frame To Samples block performs the same frame-to-sample conversion as the Frame To
Samples block. It returns output data as vectors of the entire frame of samples. The block returns
control signal vectors of the same width as the sample data. This optimization makes more efficient
use of the communication link between the FPGA board and your Simulink simulation when using
FPGA-in-the-loop (FIL). To run FPGA-in-the-loop, you must have an HDL Verifier™ license.

When you generate a programming file for a FIL target in Simulink, the tool creates a model to
compare the FIL simulation with your Simulink design. For Wireless HDL Toolbox™ designs, the FIL
block in that model replicates the sample-streaming interface to send one sample at a time to the
FPGA. You can modify the autogenerated model to use the FIL Frame To Samples and FIL Samples To
Frame blocks to improve communication bandwidth with the FPGA board by sending one frame at a
time. For how to modify the autogenerated model, see “FPGA-in-the-Loop”.

Ports
Input

frame — Frame of input samples
column vector

Frame of input samples, specified as a column vector. All samples in the vector are considered valid.
Each frame must be the same size.

Data Types: single | double | int8 | intl6 | int32 | uint8 | uint1l6 | uint32 | Boolean | fixed
point

Output

sampleN — Sample stream
vector

Stream of samples, returned as a vector representing an entire frame. The output stream includes
idle cycles between samples and between frames as specified in the block parameters.

1-9

1 Blocks

1-10

If you set Output size greater than one, the block shows one port for each output value. In this case,
a single sample is represented by N values, such as turbo-encoded samples represented by one
systematic value and two parity values. The output data is one vector for each port.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed
point

start — Start of frame
vector

Start of frame, returned as a Boolean vector containing one value for each sample in the frame. This
signal is 1 (true) for one timestep corresponding to the first valid sample of the frame.

Data Types: Boolean

end — End of frame
vector

End of frame, returned as a Boolean vector containing one value for each sample in the frame. This
signal is 1 (true) for one timestep corresponding to the last valid sample of the frame.

Data Types: Boolean

valid — Validity of samples
vector

Validity of samples, returned as a Boolean vector containing one value for each sample in the frame.
This signal is 1 (true) on timesteps that correspond to valid samples.

Data Types: Boolean

Parameters
Idle cycles between samples — Number of idle cycles to insert after each sample
0 (default) | integer

Number of idle cycles to insert after each sample, specified as a scalar integer. The block returns a
zero on each sampleN port for each idle cycle and sets all control signals to 0 (false).

Idle cycles between frames — Number of idle cycles to insert at the end of each frame
0 (default) | integer

Number of idle cycles to insert at the end of each frame, specified as a scalar integer. The block
returns a zero on each sampleN port for each idle cycle and sets all control signals to 0 (false).

Output size — Number of values representing each sample
1 (default) | positive integer

Number of values representing each sample, specified as a positive integer scalar. The block has
Output size output sample ports. The control signals apply to all sampleN ports.

FIL Frame To Samples

For example, you can use this parameter to serialize turbo-encoded samples. In the LTE standard, the
turbo code rate is 1/3, so each sample is represented by one systematic value and two parity values:
S n, P1 n, and P2 n. In this case, set Output size to 3.

Compose output from interleaved input samples — Order of output samples relative to
input order

off (default) | on
Order of output samples relative to input order, when more than one value represents each sample.

For example, for 1/3 turbo-encoded samples, the input frame can be ordered [S 1 P1 1 P2 1 S 2
P1 2 P2 2]or[S 1S 2 P11P1 2 P21 P2 2].Inthefirstcase, the output is two vectors,
[S1P11P21]and[S 2 P1 2 P2 2].To achieve the same output in the second case, select
Compose output from interleaved input samples.

Dependencies

This parameter applies when Qutput size is greater than one.

Version History
Introduced in R2017b
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

See Also
Frame To Samples | FIL Samples To Frame
Topics

“Streaming Sample Interface”
“FPGA-in-the-Loop”

1-11

1 Blocks

1-12

FIL Samples To Frame

Convert sample stream from FPGA-in-the-loop to frame-based data
Library: Wireless HDL Toolbox / I/O Interfaces

sample1

start

FIL
Samples To Frame
end

validin

FIL Samples To Frame

Description

The FIL Samples To Frame block performs the same sample-to-frame conversion as the Samples To
Frame block. It accepts input data as vectors of the entire frame of samples. The block expects
control signal input vectors of the same width as the sample data. This optimization speeds up the
communication link between the FPGA board and your Simulink simulation when using FPGA-in-the-
loop. To run FPGA-in-the-loop, you must have an HDL Verifier license.

When you generate a programming file for a FIL target in Simulink, the tool creates a model to
compare the FIL simulation with your Simulink design. For Wireless HDL Toolbox designs, the FIL
block in that model replicates the sample-streaming interface to send one sample at a time to the
FPGA. You can modify the autogenerated model to use the FIL Frame To Samples and FIL Samples To
Frame blocks to improve communication bandwidth with the FPGA board by sending one frame at a
time. For how to modify the autogenerated model, see “FPGA-in-the-Loop”.

Ports
Input

sampleN — Stream of samples
vector

Stream of samples, specified as a vector representing an entire frame. The stream can include idle
cycles between samples and between frames. Idle samples are discarded.

If you set Number of input samples greater than one, the block shows one port for each input
value. In this case, a single sample is represented by N values, such as turbo-encoded samples
represented by one systematic value and two parity values. The input data is one vector for each port.
The control signals apply to all sampleN ports.

Data Types: single | double | int8 | intl6 | int32 | uint8 | uint1l6 | uint32 | Boolean | fixed
point

start — Start of frame
vector

Start of frame, specified as a Boolean vector containing one value for each sample in the frame. This
signal is 1 (true) for one timestep corresponding to the first valid sample of the frame.

Data Types: Boolean

FIL Samples To Frame

end — End of frame
vector

End of frame, specified as a Boolean vector containing one value for each sample in the frame. This
signal is 1 (true) for one timestep corresponding to the last valid sample of the frame.

Data Types: Boolean

validIn — Validity of samples
vector

Validity of samples, specified as a Boolean vector containing one value for each sample in the frame.
This signal is 1 (true) on timesteps that correspond to valid samples.

Data Types: Boolean
Output

frame — Frame of output samples
column vector

Frame of output samples, returned as a column vector. Each frame is the same size. If the input frame
is smaller than Output size, the block pads the frame with zeroes. If the output frame is larger than
the Output size, the block forms the frame by using the first Qutput size samples. You can
optionally output the number of valid samples in each frame on the len port.

validOut — Validity of output frame
scalar

Validity of output frame, returned as a Boolean scalar. This port returns 1 (true) when the values on
the frame and len (optional) ports, are valid.

Data Types: Boolean

len — Number of valid samples in output frame
integer

Number of valid samples in output frame, returned as an integer. The input sample stream can have
frames of different sizes. The block returns a constant size vector on the frame port, padded with
zeroes when the input frame is smaller than Output size. The len port indicates how many valid
samples are in the output frame. If the output frame is larger than the Output size, the block forms
the frame by using the first Qutput size samples.

Data Types: double

Parameters
Number of input samples — Number of values representing each sample

1 (default) | positive integer

Number of values representing each sample, specified as a positive integer scalar. The block has one
sampleN port for each value. The control signals apply to all sampleN ports. For example, you can
use this parameter for turbo-encoded samples. In the LTE standard, the turbo code rate is 1/3, so
each sample is represented by one systematic value and two parity values: S n, P1 n, and P2 n.In
this case, set Number of input samples to 3.

1-13

1 Blocks

1-14

Output size — Maximum samples per frame

1024 (default) | positive integer

Maximum number of samples per frame, specified as an integer. The input sample stream can have
frames of different sizes. The block returns a constant size vector, padded with zeroes if the frame is
smaller than Output size. If the block receives a frame larger than Output size, it truncates the
frame.

Compose output from interleaved input samples — Order of output samples relative to
input order

off (default) | on

Order of output samples relative to input order, when more than one value represents each sample.
For example, 1/3 turbo-encoded samples are represented by [S 1 P1 1 P2 1] and [S 2 P1 2

P2 2]. The default output orderis [S 1 P1 1 P2 1 S 2 P1 2 P2 2]. To reorder the samples so
that systematic and parity values are grouped together, select Compose output from interleaved
input samples. The output orderisthen [S' 1 S 2 P1 1 P1 2 P2 1 P2 2].

Enable frame length output port — Output number of valid samples

off (default) | on

Enable frame length output port. Select this option to return the number of valid samples in each
output frame. The length is returned on the len port and is qualified by the valid signal. Use this
option when the sample stream has variable size frames or when a downstream block requires the
frame size as input, such as LTE Turbo Decoder.

Version History
Introduced in R2017b

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

See Also
FIL Frame To Samples | Samples To Frame

Topics
“Streaming Sample Interface”
“FPGA-in-the-Loop”

Sample Control Bus Creator

Sample Control Bus Creator

Create control signal bus for use with Wireless HDL Toolbox blocks
Library: Wireless HDL Toolbox / Utilities

W start

Sample Control
) end Bus Creator tr p

M valid

Sample Control
Bus Creator

Description

The Sample Control Bus Creator block creates a samplecontrol bus for modeling streaming control
signals in communication systems for hardware. See “Sample Control Bus”.

The block is an implementation of the Simulink Bus Creator block. See Bus Creator for more

information.

Ports
Input

start — Start of frame
scalar

Start of frame, specified as a Boolean scalar. This signal is 1 (true) for one time step, corresponding
to the first valid sample of the frame.

Data Types: Boolean

end — End of frame
scalar

End of frame, specified as a Boolean scalar. This signal is 1 (true) for one time step, corresponding
to the last valid sample of the frame.

Data Types: Boolean

valid — Validity of samples
scalar

Validity of samples, specified as a Boolean scalar. This signal is 1 (true) on time steps that
correspond to valid samples.

Data Types: Boolean
Output

ctrl — Control signals accompanying sample stream
samplecontrol bus

1-15

1 Blocks

Control signals accompanying the sample stream, returned as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

* start — Indicates the start of the output frame
* end — Indicates the end of the output frame
* valid — Indicates that the data on the output data port is valid

For more details, see “Sample Control Bus”.

Data Types: bus

Version History
Introduced in R2017b

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder™ provides additional configuration options that affect HDL implementation and
synthesized logic.

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

1-16

Sample Control Bus Creator

See Also

Blocks
Frame To Samples | Samples To Frame | Sample Control Bus Selector | Bus Creator

Functions
whdlFramesToSamples | whdlSamplesToFrames

Topics

“Streaming Sample Interface”
“Sample Control Bus”

1-17

1 Blocks

1-18

Sample Control Bus Selector

Select signals from the control signal bus used with Wireless HDL Toolbox blocks
Library: Wireless HDL Toolbox / Utilities

Sample Control
Bus Selector

Description

The Sample Control Bus Selector block selects signals from the samplecontrol bus. This bus is
used for modeling streaming control signals in communication systems for hardware. See “Sample
Control Bus”.

The block is an implementation of the Simulink Bus Selector block. See Bus Selector for more

information.

Ports
Input

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

* start — Indicates the start of the input frame
* end — Indicates the end of the input frame
* valid — Indicates that the data on the input data port is valid

For more details, see “Sample Control Bus”.

Data Types: bus
Output

start — Start of frame
scalar

Start of frame, returned as a Boolean scalar. This signal is 1 (true) for one time step, corresponding
to the first valid sample of the frame.

Sample Control Bus Selector

Data Types: Boolean

end — End of frame
scalar

End of frame, returned as a Boolean scalar. This signal is 1 (true) for one time step, corresponding
to the last valid sample of the frame.

Data Types: Boolean

valid — Validity of samples
scalar

Validity of samples, returned as a Boolean scalar. This signal is 1 (true) on time steps that
correspond to valid samples.

Data Types: Boolean

Version History
Introduced in R2017b

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

To learn more about using buses for HDL code generation, see “Buses” (HDL Coder) and “Use Bus
Signals to Improve Readability of Model and Generate HDL Code” (HDL Coder).

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

1-19

1 Blocks

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also

Blocks
Frame To Samples | Samples To Frame | Sample Control Bus Creator | Bus Selector

Functions
whdlFramesToSamples | whdlSamplesToFrames

Topics

“Streaming Sample Interface”
“Sample Control Bus”

1-20

Depuncturer

Depuncturer

Reverse puncturing scheme to prepare for decoding
Library: Wireless HDL Toolbox / Error Detection and Correction

VRV IR VIRV

< 0

5 2 oy
%

Description

The Depuncturer block replaces punctured symbols with neutral values as directed by an input
puncture vector. The block returns erasure bits, which indicate the presence of neutral symbols in the
output data stream. The block supports continuous and frame modes of operation. It provides an
interface and architecture suitable for HDL code generation and hardware deployment.

Many wireless communication standards implement different code rates by puncturing patterns with
a base code rate 1/2. The input to the block is a stream of one sample at a time. You can provide
samples represented by hard-decision binary values or soft-decision log-likelihood ratios (LLR). The
block returns output samples as 2-by-1 vectors.

The inserted neutral value depends on the data type of the input sample. For details, see the input
data port.

Ports
Input

data — Input sample
scalar

Input sample, specified as a scalar. The block inserts a neutral value at punctured locations based on
the data type of the input samples.

Input Data Type Inserted Neutral Value
* boolean 0

+ fixdt(0,1,0)

fixdt(0,WL,0) 2 (WL-1)
uint8 128
uintle6 32768
o fixdt(1,WL,0) 0

* int8

 1intl6

* single

* double

1-21

1 Blocks

1-22

The block treats the input as hard-decision samples when the input type is Boolean or
fixdt(0,1,0). For signed and unsigned numeric types, the block assumes soft-decision samples.
The block treats samples as signed integers for single and double data types, but these data types
are not supported for HDL code generation.

The input sample must have a word length less than or equal to 16 bits, and a fraction length of 0
bits.

Data Types: int8 | int16 | uint8 | uintl1l6 | Boolean | fixdt(0,1,0) | fixdt(S,WL,0) | single
| double

puncVector — Puncture vector
column vector of binary values

Puncture vector, specified as a column vector of binary values. The length of the puncture vector
must be an even number in the range [4, 28]. The length must remain constant. The block removes
initial zeros from the provided vector, up to the first 1 (true). After the first 1 (true), the puncture
vector cannot contain any [1:0] subvector matching [0 0].

For example, IEEE 802.11 WLAN standard [1] supports puncture rates 2/3, 3/4, and 5/6, with
respective vector lengths of 4, 6, and 10. To support these multiple rates, set Puncture vector
source to Input port. To support the largest vector size, the vector length must be 10 for all rates.
For 2/3 and 3/4 rates, pad the puncVector input with zeros to create a 10-element vector. The
puncture vector forrate 3/4is [1 1 0 1 1 0]"'. For a vectorlength of 10, use [0 6 6 06 1 1 0 1
1 0]' as the input puncVector.

When Operation mode is set to Continuous, the block captures the value of puncVector when
both the syncPunc and input valid ports are 1 (true).

When Operation mode is set to Frame, the block captures the value of puncVector when both
ctrl.start and ctrl.valid are 1 (true).

Dependencies

To enable this port, set Puncture vector source to Input port.
Data Types: Boolean

syncPunc — Puncture synchronization signal
scalar

Puncture synchronization signal, specified as a Boolean scalar value. This input is a control signal
that synchronizes the puncture vector input with the input sample. When both syncPunc and valid
are 1 (true), the block aligns the puncture vector to begin puncturing. The block captures the vector
from either the puncVector input port or the Puncture vector parameter. The block ignores the
puncVector port when syncPunc is 0 (false).

Dependencies

To enable this port, set Operation mode to Continuous. When Operation mode is Frame, the
block synchronizes the puncture vector using control signals in the input ctrl bus.

Data Types: Boolean

valid — Validity of input samples
scalar

Depuncturer

Control signal that indicates when the sample from data input port is valid. When valid is 1 (true),
the block captures the values of the data input port. When valid is 0 (false), the block ignores the
input samples.

Dependencies

To enable this port, set Operation mode to Continuous.

Data Types: Boolean

ctrl — Control signals accompanying sample stream
samplecontrol bus

Control signals accompanying the sample stream, specified as a samplecontrol bus. The bus
includes the start, end, and valid control signals, which indicate the boundaries of the frame and
the validity of the samples.

Dependencies

To enable this port, set Operation mode to Frame.

Data Types: bus
Output

data — Output sample
2-by-1 column vector

Output sample, returned as a 2-by-1 column vector. The data type is same as the data type of the
input samples.

Data Types: int8 | int16 | uint8 | uintl1l6 | Boolean